A Primer of
OILWELL DRILLING

A Basic Text of Oil and Gas Drilling

Seventh Edition

by Dr. Paul Bommer

in cooperation with
INTERNATIONAL ASSOCIATION
OF DRILLING CONTRACTORS (IADC)

published by
THE UNIVERSITY OF TEXAS
CONTINUING EDUCATION
PETROLEUM EXTENSION SERVICE

2008
Contents

Figures vi
Tables xiv
Preface xv
About the Author xvii

1 Introduction 1

2 History 7
The Drake Well, 1850s 9
California, Late 1800s 10
The Lucas Well, 1901 11
The Middle East, 1900s 13

3 Cable-Tool and Rotary Drilling 15
Cable-Tool Drilling 15
Rotary Drilling 16
 Rotating Systems 18
 Fluid Circulation 19

4 Rotary Rig Types 21
Land Rigs 22
Mobile Offshore Rigs 23
 Bottom-Supported MODUs 24
 Floating Units 30

5 People and Companies 37
Operating Companies 38
Drilling Contractors 39
Drilling Contracts 39
Service and Supply Companies 40
People 44
 Drilling Crews 44
 Drilling Crew Work Shifts 50
 Crew Safety 50
 Other Rig Workers 51

6 Oil and Gas: Characteristics and Occurrence 55
Natural Gas 55
 Liquefied Natural Gas (LNG) 56
 Liquefied Petroleum Gas (LPG) 56
 Natural Gas Liquid (NGL) 57
Crude Oil 57
Refined Hydrocarbons 57
Oil and Gas Reservoirs 58
 Characteristics of Reservoir Rocks 58
 Origin and Accumulation of Oil and Gas 60
 Petroleum Traps 61
Types of Wells 69

7 The Drill Site 71
Choosing the Site 71
Preparing the Site 73
Surface Preparation 73
Earthen Pits 73
Cellars 77
Rathole 77
Mousehole 79
Conductor Hole 80
Moving Equipment to the Site 82
Moving Land Rigs 82
Moving and Setting Up Offshore Rigs 84

8 Rigging Up 85
Substructures 85
The Drawworks 88
Raising the Mast or Derrick 89
 Derrick and Mast Heights 90
 Mast Load Ratings 91
Rigging Up Additional Equipment 91
Offshore Rig-Up 92

9 Rig Components 93
Power System 93
 Mechanical Power Transmission 97
 Electrical Power Transmission 97
Hoisting System 100
 The Drawworks 101
 The Catheads 102
 The Blocks and Drilling Line 104
 Mast and Derricks 109
Rotating Systems 110
 Rotary-Table System 110
 Top Drive 117
 Downhole Motors 118
 The Drill String 120
 Bits 122
Circulating System 126
 Drilling Fluid 126
 Circulating Equipment 128

10 Normal Drilling Operations 135
Drilling the Surface Hole 135
Tripping Out with a Kelly System 148
Tripping Out with a Top-Drive Unit 152
Tripping Out with a Pipe Racker 152
Running Surface Casing 154
Cementing 158
Tripping In 160
Drilling Ahead 162

11 Formation Evaluation 163
Examining Cuttings and Drilling Mud 163
Well Logging 165
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
</table>
| Drill Stem Testing | 168
| Coring | 170
| **12 Completing the Well** | 173
| Plugging and Abandoning a Well | 173
| Completing a Producing Well | 173
| Production Tubing | 174
| Perforating | 176
| Well Testing and Treating | 177
| Acidizing | 177
| Fracturing | 177
| Gravel Packing | 178
| **13 Special Operations** | 179
| Directional Drilling | 179
| Slide Drilling with a Motor | 180
| Rotary Steerable Assemblies | 181
| Fishing | 181
| Well Control | 183
| **14 Rig Safety and Environmental Concerns** | 189
| **15 Conclusion** | 191
| **Appendix 1: Units of Conversion** | 193
| **Appendix 2: Figure Credits** | 195
| **Glossary** | 207
| **Index** | 233

1. Drilling rigs are large to accommodate the size of the drilling equipment and pipes.
2. ConocoPhillips Britannia platform in the North Sea
3. Drilling rig with a mast height of 147 feet (45 metres)
4. Personal protective equipment (PPE) includes hard hats, gloves, hearing protection, and safety glasses.
5. Steel stairways with handrails are used to get to the drilling rig floor. Note the drill pipe on the ramp at right.
6. The drawworks is part of the hoisting system used to lift drill pipe into place.
7. Whaling ships in New Bedford, Massachusetts. The barrels in the foreground are filled with whale oil.
8. Oilwells in Balakhan, a suburb of Baku, Azerbaijan, in the late 1800s
9. Oil Creek near Titusville, Pennsylvania as it looks today
10. Edwin L. Drake (right) and his good friend Peter Wilson, a Titusville pharmacist, in front of the historic Drake well in 1861
11. Patillo Higgins
12. Anthony Lucas, mining engineer at Spindletop
13. Wall cake stabilizes the drilling hole
14a. The 1901 Lucas well is estimated to have flowed about 2 million gallons (7,570 cubic metres) of oil per day.
14b. Spindletop oilfield in 1903, two years after the first well was drilled
15. A cable-tool rig
16. A polycrystalline diamond compact bit (PDC) (left) and a tri-cone bit (right)
17. The drill stem puts the bit on the bottom of the drilling hole.
18. Two floorhands place a joint of drill pipe in the mousehole prior to adding it to the active drill string.
19. Components in the rotary table rotate the drill string and bit.
20. A powerful motor in the top drive rotates the drill string and bit.
21. The bit is rotated by a downhole motor placed near it.
22. A pump circulates drilling mud down the drill pipe, out the bit, and up the hole.
23. Two pumps are available on this rig to move drilling fluid down the pipe.
24. Drilling mud
25. A land rig
26. An offshore jackup rig
27. An inland barge rig
28. Rigs can be disassembled and moved piece-by-piece to a new location.
29. Types of MODUs 23
30. The first MODU was a posted-barge submersible designed to drill in shallow water. 25
31. When the bottles are flooded, the weight makes the bottle-type rig sink to the seafloor. 25
32. Ice floes on the North Bering Sea 26
33. A concrete island drilling system (CIDS) features a reinforced concrete caisson. 26
34. Drilling equipment is placed on the deck of a barge to drill in the shallow waters of bays and estuaries. 27
35. Four boats tow a jackup rig to its drilling location. 28
36. A jackup rig with four column-type legs 28
37. A jackup with open-truss legs 29
38. The hulls of these jackups are raised to clear the highest anticipated waves. 29
39. A semisubmersible rig floats on pontoons. 30
40. The heavy lift vessel, Blue Marlin, transporting BP's semisubmersible, Thunder Horse 31
41. The pontoons of this semisubmersible float a few feet (metres) below the water's surface. 31
42. The main deck of a semisubmersible is huge. Shown here is the deck of the BP Thunder Horse. 32
43. Pathfinder 10,000-foot ultradeepwater drillship 33
44. Marine riser 34
45a. The heave compensator keeps proper tension on the drill string. 35
45b. Heave compensator 36
46. Workers on a drilling rig 37
47. U.S. Department of Interior Mineral Management Service map of proposed sale of government mineral leases in 2001 38
48. IADC standard drilling bid form 41
49. A computer display showing a well log 42
50. A member of a casing crew stabs one joint of casing into another. 43
51. Personnel on this offshore rig enjoy good food in the galley. 43
52. A driller on an offshore rig works in an environmentally controlled cabin. 45
53. The view from above the derrickman's position on the monkeyboard 46
54. A derrickman checking the weight or density of the drilling mud 47
55. Floorhands latch big wrenches called tongs onto the drill pipe. 48
56. Floorhands using power tongs to tighten drill pipe 49
57. Roustabouts move casing from a supply boat to the rig. 52
58. A crane operator manipulates controls from a position inside the crane cab.
59. A large engineer monitors a semisubmersible's stability from a work station on board the rig.
60. BP's Thunder Horse listing in the Gulf of Mexico after a storm
61. Arctic Discoverer LNG transport ship
62. A pore is a small open space in a rock.
63. A cross-section showing pore space and the small connections between larger pores
64. Connected pores give rocks permeability.
65. A fault trap and an anticlinal trap
66. Types of stratigraphic traps
67. A combination trap
68. A piercement salt dome
69. To the right of the tire, a large heavy plate vibrates against the ground to create sound waves.
70. Several special trucks vibrate plates against the ground.
71. Fugro Explorer seismic vessel
72. Stuck into the ground, a geophone picks up reflected sound waves.
73. iZone Virtual Reality room at EPI Centre in Rijswijk, the Netherlands, 2008
74. Geologists working at a prospective petroleum area at the Peel Plateau in the Yukon
75. A reserve pit
76. Typical onshore layout of a drilling location
77a. Pit cleaning with Super Vac units
77b. Reserve pit cleanup and removal
78. A concrete pad to support the substructure surrounds this cellar.
79. The kelly has been placed in the rathole when the rig is not drilling.
80. A joint of drill pipe rests in this rig’s mousehole.
81. A rathole rig drills the first part of the hole.
82. The conductor hole
83. The large diameter pipe to the right is the top of the conductor pipe.
84. A portable shallow oil drilling rig
85a. A heavy lift vessel carries a semisubmersible to a new drilling location.
85b. The Black Marlin heavy lift vessel transporting the Nautilus rig
86. A box-on-box substructure
87. A slingshot substructure is shown in folded position prior to being raised.
88. The slingshot substructure near its full height
89. This drawworks will be installed on the rig floor.
90. The drilling line is spooled onto the drawworks drum.
91. A mast being raised to a vertical position
92. This rig with a standard derrick was photographed in the 1970s at work in West Texas.
93. The derrick supports the weight of the drill string and allows the drill string to be raised and lowered.
94. The doghouse is located at the rig floor level.
95. In the foreground is a coal-fired boiler that made steam to power the cable-tool rig in the background.
96. A mechanical rig is shown drilling in West Texas in the 1960s.
97. Three diesel engines power this rig.
98. Three engines drive a chain-and-sprocket compound to power equipment.
99. The diesel engine at right directly drives an alternating current electric generator.
100. Controls in the SCR house where AC electricity is converted to the correct DC voltage for the many DC motors powering this rig.
101. A motor-driven drawworks
102. Two powerful electric DC traction motors drive the drawworks on this rig.
103. The hoisting system
104. The drawworks
105. Removing the drawworks housing reveals the main brake bands to the left and right on the hubs of the drawworks drum.
106. The electromagnetic brake is mounted on the end of the drawworks.
107. A floorhand has a fiber rope wrapped around a friction cathead to lift an object on the rig floor.
108. Floorhand using an air hoist to lift an object
109. This makeup cathead has a chain coming out of it that is connected to the tongs.
110. Wire-rope drilling line coming off the drawworks drum
111. Drilling line is stored on this supply reel at the rig.
112. Drilling line is firmly clamped to this deadline anchor.
113. The sheaves (pulleys) of this crown block are near the bottom of the photo.
114. Ten lines are strung between the traveling block and the crown block.
115. Several wraps of drilling line on the drawworks drum
116. Traveling block and kelly assembly
117. The mast supports the blocks and other drilling tools.
118. A rotary-table system 110
119. The turntable is housed in a steel case. 111
120. The master bushing fits inside the turntable. 111
121. Crewmembers are installing one of two halves that make up the tapered bowl. 112
122. Crewmembers set slips around the drill pipe and inside the master bushing’s tapered bowl to suspend the pipe. 113
123. The master bushing has four drive holes into which steel pins fit on the kelly drive bushing. 113
124. A master bushing with a square bottom that fits into a square opening in the master bushing 113
125a. A square kelly 114
125b. A hexagonal kelly 114
126. A hexagonal kelly inside a matching opening in the top of the kelly drive bushing 114
127. The hook on the bottom of the traveling block is about to be latched onto the bail of the swivel. 115
128. Drilling fluid goes through the rotary hose and enters the swivel through the gooseneck. 116
129. A top drive, or power swivel, hangs from the traveling block and hook. 117
130. Mud pressure pumped through the drill string forces the spiral rotor of the mud motor to turn inside the rubber helical-shaped stator. 118
131. Horizontal hole 119
132. A downhole motor lying on the rack prior to being run into the hole 119
133. An adjustable bent housing on the motor deflects the bit a few degrees off-vertical to start the directional hole. 119
134. Drill collars are placed on the pipe rack prior to being run in the hole. 120
135. Drill collars put weight on the bit, which forces the bit cutters into the formation to drill it. 120
136. Several joints of drill pipe are placed on the pipe rack before being run in the well. 121
137. A floorhand stabs the pin of a joint of drill pipe into the box of another joint. 121
138. Two drill collars on a pipe rack; at left is the drill collar box; at right is the pin 122
139. Drill collars racked in front of drill pipe on the rig floor 122
140. A roller cone bit has teeth (cutters) that roll, or turn, as the bit rotates. 123
141. Tungsten carbide inserts are tightly pressed into holes drilled into the bit cones. 123
142. Drilling fluid (salt water in this photo) is ejected out of the nozzles of a roller cone bit. 123
143. Bit cutaway showing internal bearing 124
Several types of natural diamond bits are available.

Several diamond-coated tungsten carbide disks (compacts) form the cutters on this polycrystalline diamond compact (PDC) bit.

Drilling mud swirls in one of several steel tanks on this rig.

A derrickman measures the density (weight) of a drilling mud sample using a balance calibrated in pounds per gallon.

Powerful mud pumps (most rigs have at least two) move drilling mud through the circulating system.

Components of a rig circulating system

The standpipe runs up one leg of the derrick, or mast, and conducts mud from the pump to the rotary hose.

Mud with cuttings falls over the vibrating shale shaker screen.

Desanders remove sand-sized particles from the mud.

Desilters remove smaller silt-sized particles from the mud.

The degasser removes a relatively small volume of gas that enters the mud from a downhole formation and is circulated to the surface in the annulus.

A centrifuge removes particles even smaller than silt.

A mud cleaner is used for mud weighted with barite.

Bulk barite tanks with bagged chemicals in the foreground

A derrickman, wearing personal protective equipment, adds dry components to the mud through a hopper.

A closed-top chemical barrel for adding caustic chemicals to the mud in the tanks

Typical wellbore architecture

A bit being lowered into the hole on a drill collar

A kelly with related equipment in the rathole

Red-painted slips with three handgrips suspend the drill string in the hole.

The kelly drive bushing is about to engage the master bushing on the rotary table.

The motor in the top drive turns the drill stem and the bit.

The black inner needle on the weight indicator shows the weight suspended from the derrick in thousands of pounds.

The kelly is drilled down (close to the kelly drive bushing), and it is time to make a connection.

Using the traveling block, the driller raises the kelly, exposing the first joint of drill pipe in the opening of the rotary table.
169. Crewmembers latch tongs on the kelly and on the drill pipe. 141
170. The kelly spinner rapidly rotates the kelly in or out of the drill pipe joint. 142
171. Crewmembers stab the kelly into the joint of pipe in the mousehole. 143
172. Crewmembers use tongs to buck up (tighten) one drill pipe joint to another. 144
173. Crewmembers remove the slips. 145
174. The kelly drive bushing is about to engage the master bushing. 145
175. Making a connection with a kelly 145
176. Making a connection using a top drive 146
177. An Iron Roughneck™ spins and buck up joints with built-in equipment. 147
178. The kelly and swivel with its bail are put into the rathole. 148
179. Crewmembers latch elevators to the drill pipe tool joint suspended in the rotary table. 149
180. The floorhands set the lower end of the stand of pipe off to one side of the rig floor. 150
181. The derrickman places the upper end of a stand of drill pipe between the fingers of the fingerboard. 151
182. Making a trip 152
183. Top view of an automatic pipe handling device manipulating a stand of drill pipe 153
184. A casing crewmember cleans and inspect the casing as it lies on the rack next to the rig. 154
185. Casing threads have been cleaned and inspected. 154
186. A joint of casing being lifted onto the rig floor 155
187. A joint of casing suspended in the mast; note the centralizer 155
188. Casing elevators suspend the casing joint as the driller lowers the joint into the casing slips. 155
189. Working from a platform called the stabbing board, a casing crewmember guides the casing elevators near the top of the casing joint. 156
190. Crewmembers lift the heavy steel-and-concrete guide shoe. 157
191. The guide shoe is made up on the bottom of the first joint of casing to go into the hole. 157
192. Cementing the casing: (A) the job in progress; (B) the finished job 157
193. Crewmembers install a float collar into a casing string. 157
194. Scratchers and centralizers are installed at various points in the casing string. 158
195. Top view of casing that is not centered in the hole. 158
196. A cementing head (plug container) rests on the rig floor, ready to be made up on the last joint of casing to go into the hole. 159

197. To trip in, crewmembers stab a stand of drill pipe into another. 160

198. After stabbing the joint, crewmembers use a spinning wrench to thread the joints together. 161

199. After spin up, crewmembers use tongs to buck up the tool joints to the correct torque. 161

200. A handful of cuttings made by the bit 163

201. Mud log section showing a formation that contains hydrocarbons 165

202. Logging personnel run and control logging tools by means of wireline from a logging unit. 166

203. A well-site log is interpreted to give information about the formations drilled. 167

204. Drill stem test tools 168

205. A successful DST 169

206. Repeat formation tester (RFT) tool 169

207a. A whole core barrel 170

207b. Sidewall coring device 170

208. A. An oil-saturated whole core from a South Texas well; B. Sidewall cores 171

209. This collection of valves and fittings is a Christmas tree. 173

210. Subsea wellheads 174

211. A coiled-tubing unit runs tubing into the well using a large reel. 175

212. Perforations (holes) 176

213. Shaped charges in a perforating gun make perforations. 176

214. A gravel pack 178

215. Several directional wells tap an offshore reservoir. 179

216. An overshot 181

217. A. The spear goes inside the fish in a released position. B. Once in position, the spear is set and the fish is removed. 182

218. Fluids erupting from underground caught fire and melted this rig. 183

219. A stack of BOPs installed on top of the well 185

220. Ram cutaway 185

221. A subsea stack of BOPs being lowered to the seafloor from a floating rig 186

222. Several valves and fittings make up a typical choke manifold. 186

223. A remote-controlled choke installed in the choke manifold 187

224. This control panel allows an operator to adjust the size of the choke. 187
Tables

1. Land Rigs Classified by Drilling Depth 22
2. Types of MODUs 24
3. IADC Annual Work Time and Accident Statistics 189
The Petroleum Extension Service (PETEX) published the first edition of *A Primer of Oilwell Drilling* in 1951. With this latest printing there have been seven editions of the primer written by several editors and authors. Each edition was created in order to keep the book current with advances in drilling technology.

Although drilling technology continues to evolve the purpose of this book has remained the same: to clearly explain drilling to non-technical readers. The book also includes sections on the history of the petroleum industry as well as the evolution of the science and art of drilling. Anyone with an interest in the oil and gas business in general and drilling in particular will find this a useful first reader on the subject. Additional information on the petroleum industry can be found in many of the other excellent books offered by PETEX.

This edition is a major revision of the works that came before. The task was made infinitely easier because of the excellent frame work built into the sixth edition by Ron Baker (then the Director of PETEX).

The manuscript was created certainly not just through me and my predecessors but by the excellent and supportive staff of PETEX. In particular I wish to thank Dr. Larry Lake, Chairman of my Department, for suggesting I become involved in this project and Ms. Francisca Kennedy-Ellis, Assistant Director of PETEX, who agreed.

PETEX is solely responsible for the contents of this book. While every effort has been made to ensure the accuracy of the contents, the book is intended only as a training aid and does not intend to approve or disapprove any specific product, service, or practice.

Paul M. Bommer, Ph.D.
Senior Lecturer
The Department of Petroleum and Geosystems Engineering
The University of Texas at Austin
2008
Paul M. Bommer is a Senior Lecturer in Petroleum Engineering at The University of Texas at Austin. He received his Bachelor’s ('76), Master’s ('77), and Doctoral ('79) degrees in Petroleum Engineering, all from The University of Texas at Austin.

He spent over twenty-five years in industry as an oil and gas operator and consultant in Texas and other parts of the United States. He and his brother Peter (UT, BS-PGE ‘78) are co-owners in the firm of Bommer Engineering Company.

He is a third generation oil man following his father (UT, BS-PGE, ’50) who was a highly regarded petroleum engineer in Texas as the principal owner of Viking Drilling Company in San Antonio and his paternal grandfather who was a field superintendent in Oklahoma, East Texas and on the Texas Gulf Coast for Stanolind (later Amoco) Oil Company. As with most oilfield families, his mother (UT, BS-HEc, ’49) made sandwiches for the crews, curtains for the tool pusher’s trailer, created a home, and raised the kids.
This book is an introduction to the art and science of drilling oilwells. While this book focuses on well drilling in the oil and gas industry, it is important to note that wells can be drilled for a variety of purposes. Not all wells are used to extract oil and gas from the earth. Wells are also drilled to produce fresh water for irrigation and to supply water to cities. Some wells are drilled into deep layers of rock to dispose of hazardous waste. Greenhouse gases, such as carbon dioxide, can be captured and injected into underground layers for permanent disposal. The same well drilling methods can be applied to all these uses.

Drilling rigs are large and noisy. They operate numerous pieces of enormous equipment (fig. 1). The purpose of a drilling rig is only to drill a hole in the ground. Although the rig is big, the hole it drills is relatively small. The purpose of the drill hole is to tap an oil or gas reservoir often thousands of feet or hundreds of metres below the surface of the earth. The drill hole is usually less than one foot (30 centimetres) in diameter at final depth.
The story of modern oilwell drilling began at the start of the industrial revolution. Workers wanted better ways to illuminate their homes when they returned from the factories. The steam-powered industrial machines increasingly used in factories also required good quality lubricant oils.

Responding to the demand for reliable lighting, companies began making oil lamps, which were brighter than candles, lasted longer, and were not easily blown out by errant breezes. The best source of oil to burn in the early oil lamps was sperm whale oil. Whale oil was clear, almost odorless, light in weight, and burned with little smoke.

While everyone preferred whale oil, by the mid-1800s it was so scarce that only the wealthy could afford it (fig. 7). Whalers in the New England region of the United States had nearly hunted sperm whales into extinction. There was a demand for something to replace whale oil.

Oil seeping out of shallow accumulations is a common, worldwide phenomenon. The area around Baku, Azerbaijan, had been known from ancient times to hold oil and natural gas seeps. The first modern oilwell was drilled in Baku in 1846. This well was drilled to a depth of 69 feet (21 metres). By 1872, due mainly to lamp oil demand, the Baku area had so many wells that it became known as the “Black City.”

Figure 7. Whaling ships in New Bedford, Massachusetts. The barrels in the foreground are filled with whale oil.
Cable-tool drilling and rotary drilling techniques have been available since people first began making holes in the ground. Rotary rigs dominate the industry today, but cable-tool rigs drilled many wells in the past. Over 1,600 years ago, the Chinese drilled wells with various primitive yet efficient cable-tool rigs, which they continued to use into the 1940s. To quarry rocks for the pyramids, the ancient Egyptians drilled holes using hand-powered rotating bits. They drilled several holes in a line and stuck dry wooden pegs in the holes. Then they saturated the pegs with water. The swelling wood split the stone along the line made by the holes.

Most wells today are drilled with rotary rigs based on the Hamil Brothers’ design at Spindletop.

CABLE-TOOL DRILLING

A steam-powered cable-tool rig was used by Drake and Smith to drill the Oil Creek site in Pennsylvania. The early drillers in California and elsewhere also used cable-tool rigs. The principle of cable-tool drilling is the same as that of a child’s seesaw. When a child is on each end of a seesaw, it moves it up and down. The rocking motion demonstrates the principle of cable-tool drilling.

To explore the concept further, one could tie a cable to the end of the seesaw and let the cable dangle straight down to the ground. Next, a heavy chisel with a sharp point could be attached to the dangle end of the cable. By adjusting the cable’s length so the end of the seesaw is all the way up, the chisel point hangs a short distance above the ground. Releasing the seesaw lets the heavy chisel hit hard enough to punch a hole in the ground. Repeating the process and rocking the seesaw causes the chisel to drill a hole. The process is quite effective. A heavy, sharp-pointed chisel can slowly force its way through rock, bit by bit, with every blow (fig. 15).

A cable-tool rig operates much like a seesaw with a powered walking beam mounted on a derrick. The walking beam is a wooden bar that rocks up and down on a central pivot. At Drake’s rig, a 6-horsepower (4.5-kilowatt) steamboat engine powered the walking beam. As the beam rocks up, it raises the cable attached to a chisel, or bit. Then, when the walking beam rocks down, heavy weights above the bit, called sinker bars, provide weight to ram it into the ground. The bit punches its way into the rock, and repeated lifting and dropping make the bit drill into the earth. The driller lets out the cable gradually as the hole deepens. The derrick provides space to raise the cable and pull the long drilling tools out of the hole using one of several winches called the bullwheel.

Figure 15. A cable-tool rig
A variety rotary drilling rigs might be used depending on the location and geography of the reservoir.

Offshore, the ocean environment plays an important role in rig design. Rigs may be broadly divided into two categories: rigs that work on land (fig. 25) and rigs that work offshore (figs. 26 and 27).

One type of offshore drilling facility is a platform. Although drilling occurs from platforms, most companies use platforms for production of oil and gas rather than for drilling. Because this book concentrates on drilling and not platforms, more information about platforms is available in another PETEX publication: A Primer of Offshore Operations.

If a platform is designed for drilling, the rig on the platform operates just like a land rig. Several wells can be drilled from the same platform, and the rig is moved or skidded over to the next slot in the platform to begin a new well.

Figure 25. A land rig

Figure 26. An offshore jackup rig

Figure 27. An inland barge rig
Whether on land or offshore, and regardless of size, all rigs require personnel to operate them. There are people employed by companies involved in drilling work all over the world. They drill wells on land and ice, in swamps, and on water as small as lakes or as large as the Pacific Ocean. Drilling is demanding work, continuing 24 hours a day, 7 days a week, in all kinds of weather (fig. 46).

Drilling is also increasingly complex. The technical complexity is so great that no single company is diverse enough to perform all the required work. Consequently, many companies and individuals are involved in drilling a well, including operating companies, drilling contractors, and service and supply companies.

Figure 46. Workers on a drilling rig
Oil and gas are naturally occurring hydrocarbons. Two elements, hydrogen and carbon, make up a hydrocarbon. Because hydrogen and carbon have a strong attraction for each other, they form many compounds. The oil industry processes and refines crude hydrocarbons recovered from the earth to create hydrocarbon products including: natural gas, liquefied petroleum gas (LPG, or hydrgas), gasoline, kerosene, diesel fuel, and a vast array of synthetic materials such as nylon and plastics.

Crude oil and natural gas occur in tiny openings of buried layers of rock. Occasionally, the crude hydrocarbons ooze to the surface in the form of a seep, or spring. More often, rock layers trap the hydrocarbons thousands of feet (metres) below the surface. To bring the trapped hydrocarbons to the surface, operating companies and drilling contractors drill wells.

NATURAL GAS

The simplest hydrocarbon is methane (CH₄). It has one atom of carbon (C) and four atoms of hydrogen (H). Methane is a gas under standard conditions of pressure and temperature. Standard pressure is the pressure the atmosphere exerts at sea level, about 14.7 psia (101 kPa). Standard temperature is 60 degrees Fahrenheit, or 15.6 degrees Celsius.

Methane is the main component of natural gas. Natural gas occurs in buried rock layers usually mixed with other hydrocarbon gases and liquids. It sometimes also contains nonhydrocarbon gases and liquids such as helium, carbon dioxide, nitrogen, water, and hydrogen sulfide. Hydrogen sulfide is a poison that has a detectible sour or rotten-egg odor, even in low concentrations. Natural gas that contains hydrogen sulfide is called sour gas. After natural gas is produced or recovered, a gas processing facility removes impurities so the gas can be used by consumers.
The location of the well, or drill site, varies as the surface geography of the earth varies. In the industry’s early days, geologists and wildcatters were able to find oil and gas in places readily accessible. As people began using more hydrocarbons, the oil industry extended its search for oil and gas worldwide. Today, companies might drill wells in the frozen wilderness, remote desert, marshes, jungles, rugged mountains, and deep offshore waters. A drill site is anywhere oil and gas exists or might exist.

CHOOSING THE SITE

The operating company considers several factors when deciding where to drill. A key factor is the company knows or believes that hydrocarbons exist in rocks beneath the site. Sometimes, an operator drills a well in an existing field to increase production from it. In other cases, an operator drills a well on a site where no one has previously found oil or gas.

Where no production has occurred, a company often hires geologists and geophysicists to find promising sites (fig. 74). Geologists and geophysicists are called explorationists because they explore areas to determine where hydrocarbons might exist. Major companies have an explorationist staff, while independent companies might hire consultants or buy information from companies that specialize in geological and geophysical data.

Figure 74. Geologists working at a prospective petroleum area at the Peel Plateau in the Yukon
Rigging up an offshore drilling rig is usually not as complicated as rigging up a land rig. Most offshore rigs can be moved over water with almost no need to disassemble major parts. Onsite, the offshore rig is stabilized by placing rig supports on the ocean floor for bottom-supported rigs or, by anchors, anchor chains, and wire or polyester rope for floaters. Only the dynamically positioned floaters require no additional support to stay in position during drilling.

To move most land rigs, crewmembers must disassemble many of its components. Disassembly is required so the parts can be transported to the next location and then reassembled. For safety, rigging up usually takes place only during daylight hours. Even with lighting after dark, there is too much heavy equipment to move safely during rig-up.

On most land rigs during rigging up, the rig parts are put back together so the rig can drill a hole. It involves unloading and hooking up the rig engines, the mud tanks and pumps, and other equipment on the site. One of the last steps, and one of the more dramatic, is raising the mast from horizontal—the position in which it was transported—to the vertical drilling position. The first rig component positioned by the crew is the rig’s substructure, which is the base, or foundation.

SUBSTRUCTURES

A substructure is the framework located directly over the hole; it is the foundation of the rig. The bottom of the substructure rests on level ground. The crew places a work platform on top of the substructure called the rig floor. The substructure raises the rig floor to approximately 10 to 40 feet (3 to 12 metres) above the ground. Elevating the rig floor provides room under the rig for special high-pressure valves and a blowout preventer (BOP) stack that the crew connects to the top of the well’s casing. The exact height of a substructure depends on the space needed for this equipment. A cellar also provides more space for the equipment.
The main function of a rotary rig is to drill a hole in the ground, or to make hole. Making hole with a rotary rig requires qualified personnel and a large amount of equipment. There are four main categories of equipment systems used in making hole: power, hoisting, rotating, and circulating.

POWER SYSTEM

Every rig needs a source of power to run the hoisting, circulating, and rotating equipment. In the early days of drilling, steam engines powered most rigs. In the 1860s, Colonel Drake powered his rig with a wood-fired steamboat engine. Until the 1940s and 50s, steam engines drove almost every rig (fig. 95).

Steam is a tremendous power source. For example, steam catapults are used today on modern aircraft carriers to launch aircraft. The major problem with using steam power on drilling rigs was that the boilers were heavy and difficult to move. Also, the steam lines to the steam engines were heavy and withstood high pressures and temperatures. Steam power also required large volumes of water and fuel.

Figure 95. In the foreground is a coal-fired boiler that made steam to power the cable-tool rig in the background.
Normal drilling operations include drilling the hole and adding a new joint of pipe as the hole deepens. It also involves tripping the drill string out the hole to put on a new bit and then running it back to the bottom (making a round trip). Other key steps include running and cementing the large-diameter steel casing used to seal selected intervals of the hole.

DRILLING THE SURFACE HOLE

Engineers create a well plan and a wellbore architecture for every well before it is drilled. A typical wellbore architectural diagram for an onshore well is shown in figure 160. The wellbore diagram shows the hole and casing sizes needed to drill the well to its desired depth.

Figure 160. Typical wellbore architecture

1. **13\(\frac{1}{2}\)" SURFACE HOLE**
 - Drilled to 3,500' with mud weight = 9.2 ppg at 3,500'
 - 3,500'

2. **9\(\frac{1}{4}\)" INTERMEDIATE HOLE**
 - Drilled to 9,700' with mud weight = 12.8 ppg at 9,700'

3. **6\(\frac{1}{2}\)" PRODUCTION HOLE**
 - Drilled to 10,600' with mud weight = 16.3 ppg at 10,600'

4. **10\(\frac{3}{4}\)" SURFACE CASING**
 - Set at 3,500' and cemented back to ground level

5. **7\(\frac{3}{4}\)" INTERMEDIATE CASING**
 - Set at 9,700' and cemented back to 7,500'

6. **16" x \(\frac{1}{2}\)" WALL STRUCTURAL DRIVE PIPE**
 - Driven to 150' or point of first refusal

7. **10\(\frac{1}{4}\)" SURFACE CASING**
 - Set at 3,500' and cemented back to 7,500'

8. **5" PRODUCTION LINER**
 - Set from 9,200' to 10,600'
 - Liner top packer and hanger set at 9,200'
 - Cement 9,200' to 10,600'

Annulus space above the cement is left full of drilling mud.

The well is left full of completion fluid.

Courtesy of Dr. Paul Bommer
Formation evaluation is the process used by operators to determine if rock layers contain hydrocarbons. Formation evaluation can determine if sufficient quantities of hydrocarbons are present and if the rock has enough permeability to allow a commercial completion. The techniques addressed in this chapter are the examination of cuttings and drilling mud, well logging, drill stem testing, and coring.

EXAMINING CUTTINGS AND DRILLING MUD

One of the oldest formation evaluation techniques is to simply look at the cuttings and the drilling mud returning from the bottom of the hole (fig. 200). A geologist or trained technician who examines the returning drilling mud and cuttings is called a mud logger.

The rock type can be identified from the cuttings. This is important because reservoirs typically fall into broad categories by rock type. For example, reservoir rocks are often sandstone and limestone, which develop the correct combination of porosity and permeability needed to contain hydrocarbons and allow them to flow. A rough idea of the porosity of a rock can be determined by viewing cuttings under a microscope. If a rock contains oil, trace amounts of oil will coat the cuttings even after they have been circulated in drilling fluid and brought to the surface.

Oil is a polarizing compound. It will have a fluorescent shine when viewed in a black light box. The oil stain on cuttings can be confirmed by flushing the oil off the cuttings with a solvent. The streaming solvent will also fluoresce under the black light. In this way, an oil stain can be differentiated from other rock mineral that might also fluoresce. Using this method to determine the presence of oil does not work if an oil-based mud is used as a drilling fluid.
Once the formation evaluation is done, the operator must decide if the well should be completed as a producing oil or gas well. If the well does not contain hydrocarbons, or not enough to pay for the completion, the well will be plugged and abandoned (P&A).

PLUGGING AND ABANDONING A WELL
To P&A a well, the drilling rig pumps several cement plugs through the drill pipe. The cement plugs are used to isolate and seal unprofitable hydrocarbon zones from nonhydrocarbon-bearing zones and to seal freshwater zones from saltwater-bearing zones. The intervals between cement plugs are left full of drilling mud. At this time, it might be possible to cut off and recover some of the intermediate casing string (if one is present) for use in other wells. The surface casing string is always left in place and sealed at the bottom and top by either cement plugs or a combination of mechanical and cement plugs. The surface casing will be cut off below the ground level or mud line and a cap placed on the stub. If the well is on land, the well site will be environmentally restored after the drilling rig has been moved off the location.

COMPLETING A PRODUCING WELL
The drilling rig is used to run and cement production casing as described previously. The blowout preventers are removed and a production wellhead is attached to the top of the casing. The production wellhead seals the tops of the various casing strings in the well, provides a place to suspend and seal production tubing as needed, and provides the valves that control flow out of the well. Figure 209 shows a typical land wellhead or Christmas tree.

Figure 209. This collection of valves and fittings is a Christmas tree.
There are several special operations used in oilwell drilling: directional drilling, fishing, and well control.

DIRECTIONAL DRILLING

No well is ever perfectly vertical. Even wells meant to be drilled vertically will wander a few degrees from vertical and move in different directions. Routine measurements are taken during drilling to determine if a well is deviating from vertical by more than the allowed amount (normally less than 5 degrees). If so, careful drilling practices, such as changing the placement of stabilizers in the BHA or adjusting the **rotary speed** or weight on bit, will bring the well back within the tolerances normally allowed for vertical wells.

Directional drilling is used when a well is intentionally deviated to reach a **bottomhole location (BHL)** that is different from the **surface location (SL)**. Directional drilling is done for many reasons. The BHL might be under an obstruction such as a building or lake where rigging up over the required BHL is not possible. It might be necessary to drill several wells from a fixed place, such as an offshore platform or an onshore drilling island (fig. 215), to different bottomhole locations.

Part of an existing well might become blocked with lost drilling tools that are unrecoverable, or a well might have been drilled into an unproductive part of the reservoir. It is possible to set a plug in the lower part of the well and deviate, or **kick off**, the well to a new BHL. Some reservoirs are more efficiently produced by wells drilled at a very high angle. These wells are known as **horizontal wells** because the inclination angle from vertical reaches 90 degrees or more.

Older directional drilling methods placed inclined wedges, called **whipstocks**, in the well to force the bit to move in the desired direction. In soft sediments, it is possible to place a large bit nozzle or jet in the desired direction and simply erode the well’s starting path. Although time consuming, these methods are still used at times.

The two faster and often more reliable methods of directional drilling are:

- **Slide drilling** with a motor
- **Drilling** with a **rotary steerable assembly**

Figure 215. Several directional wells tap an offshore reservoir.
Safety training is part of everyday life for all hands on a drilling rig. There are safety meetings at the beginning of every tour and before each new part of a job. Outside training, such as well control schools and helicopter safety training for offshore crews, is also required for drilling personnel. The equipment used to drill a well is technical and complex, and those who run the equipment must be well trained.

The International Association of Drilling Contractors (IADC) keeps a list of detailed statistics on accident rates in the drilling industry. The annual statistics can be viewed at IADC's Web site (www.iadc.org). One statistic is the total number of any type of accident that occurs for every one million man-hours worked. This number has declined slightly from 2002–2007 at an average of 11.16 accidents per one million man-hours worked. A normal number of hours one person might work on a drilling rig is about 3,100 man-hours in one year. So, a five-person crew will work roughly 15,500 man-hours in one year. Using the average accident rate shown above, the number of accidents that might be estimated to occur in one year in the five-person crew is 0.18 or less than one. This calculation suggests the average drilling crewmember is a safe worker.

The total number of man-hours actually worked in the worldwide drilling industry is enormous and increases as more rigs are added to the world fleet. Table 3 shows the annual man-hours worked and the total accident frequency rate from the IADC data base. Although safety can always be improved, these statistics suggest the industry is becoming safer because the accident rate has decreased with the increasing work time.

Table 3

IADC Annual Work Time and Accident Statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Man-Hours</th>
<th>Accident Frequency</th>
<th>Total Accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>446,335,455</td>
<td>10.24</td>
<td>4,572</td>
</tr>
<tr>
<td>2006</td>
<td>418,954,216</td>
<td>10.85</td>
<td>4,547</td>
</tr>
<tr>
<td>2005</td>
<td>369,693,317</td>
<td>11.72</td>
<td>4,332</td>
</tr>
<tr>
<td>2004</td>
<td>336,122,663</td>
<td>11.29</td>
<td>3,794</td>
</tr>
<tr>
<td>2003</td>
<td>301,959,960</td>
<td>11.16</td>
<td>3,369</td>
</tr>
<tr>
<td>2002</td>
<td>281,350,992</td>
<td>11.72</td>
<td>3,297</td>
</tr>
</tbody>
</table>

Source: IADC
Drilling has developed into a specialized and technologically advanced business. The size of the equipment is enormous. The technical challenges to overcome as wells become deeper and are drilled in increasingly hostile environments are equally enormous. The technology of the most advanced drilling rig is computer-controlled and can be monitored from any office in the world. The guidance systems used in directional drilling rival those found on modern jet aircraft or spacecraft.

The energy business is the largest business in the world. This will continue because the standard of living in most countries is now tied to the ability to find and use energy efficiently. Well drilling continues to be an important part of the efficient use of energy, regardless of whether the well is producing hydrocarbons or water, or permanently disposing wastes by injecting them into deep layers in the earth.

The drilling industry must have people who are trained, motivated, and, most importantly, interested in the business, the science, and the art of drilling.