Contents

1. FUNCTIONS AND COMPOSITION OF DRILLING FLUIDS
 - Principal Functions of Drilling Mud
 - Keeping the hole free of cuttings—Overcoming gas, oil, and water flows—Preventing the walls from caving—Cooling the bit and lubricating the drill string—Securing proper information from the well.

2. FIELD TESTS OF DRILLING FLUIDS
 - Density or Mud Weight Tests
 - The mud balance
 - Tests for Viscosity and Gel Properties
 - Marsh funnel—Direct-indicating viscometer
 - Filtration and Wall Building Tests
 - Low temperature test—High temperature test
 - Sand Content Determination
 - Distillation of oil and water—Estimation of composition of solids
 - pH Determination
 - The colorimetric method—The electrometric method
 - Filtrate Analysis
 - Resistivity
 - Equipment—Procedure
 - Electrical Stability of Emulsions
 - Equipment—Procedure
 - Treatment of Make-up Water
 - Pilot Testing

3. DRILLING FLUID CIRCULATING SYSTEMS AND AUXILIARY EQUIPMENT
 - MAIN COMPONENTS OF A MUD SYSTEM
 - Mud Pumps
 - Hose, Swivel, and Mud Return
 - Mud Return Line
 - Pits
ACCESSORY EQUIPMENT ... 30
Chemical Tank ... 30
Mixing Hopper ... 30
Mud Storage ... 31
AUXILIARY EQUIPMENT .. 32
Shale Shakers and Vibrating Screens .. 32
Mud Guns ... 33
Paddle Agitators ... 33
Cone-Type Desanders and Desilters .. 34
Centrifuges ... 36
Decanting centrifuge—Concentric cylinder centrifuge
Mud-Gas Separator .. 38
Degasser .. 39
Mud Handling Pumps .. 40
Instrumentation ... 40
Mud pit indicators and totalizers—Mud weight indicators—Mud flow meters—Pump stroke counters

4. COMMON DRILLING AND DRILLING FLUID PROBLEMS 43
Mud Records ... 43
Shale Problems .. 43
Mechanical factors in shale problems—Shale types and contained clays—Effect of geology on shale problems—Effect of compaction on shale pore pressure—Causes of shale instability—Shale stabilization with oil mud—Shale stabilization with water base mud—Conclusion.

LOST CIRCULATION ... 48
Formations Subject to Lost Circulation 48
Cavernous and open-fissured formations—Coarsely permeable formations—Natural or intrinsic fractured formations—Easily fractured formations.
Lost Circulation Materials .. 50
Procedures for Lost Circulation .. 50
Locating Lost Returns Zone .. 51
Temperature survey—Spinner survey—Radioactive tracer survey—Hot wire survey—Pressure transducer survey

HIGH BOTTOM HOLE TEMPERATURES 52
FORMATION PRESSURE CONTROL ... 53
Porosity Data as an Index of High Pressure Shales 54
Hydrostatic Pressure and Effective Circulating Density 55
Recognizing the Kick ... 56
Well kicks while circulating—Well kicks when pump is shut down—Well kicks when coming out of the hole—Well kicks when going into the hole.
Bottom Hole Pressure Reduction from Gas Expansion 57
Blowout Prevention Procedures ... 58
Constant bottom hole pressure method—Drillers method
Corrosion ... 63
Oxygen—Carbon dioxide—hydrogen sulfide

5. WIDELY USED DRILLING FLUIDS .. 67
Classification of Drilling Fluids ... 67
Water base fluids—Oil base fluids—Gaseous fluid
Solids-Free Liquid. .. 99
 Sodium chloride—Sodium chloride-soda ash—Calcium chloride—Calcium chloride-sodium chloride—Calcium chloride-zinc chloride.

Water Base Muds .. 101
 Drilling mud—Gel-CMC packer mud.

Oil Muds ... 101

Placement of Special Packer Fluids. 102

7. DRILLING FLUID PRACTICES IN THE GULF COAST OF
 TEXAS AND LOUISIANA .. 103
 Mud and Casing Programs .. 103
 Muds for Normal-Pressure Drilling 104
 Muds for Abnormally High Pressures 104
 High Formation Temperatures 105
 Shallow Blowout Hazard .. 105
 Salt-Dome Drilling .. 106
 Offshore and Bay Drilling Muds 107
 Lost Circulation .. 107

8. DRILLING FLUID PRACTICES IN THE ARK-LA-TEX AND
 MISSISSIPPI AREA .. 109
 General Considerations ... 114
 Mud Types and Treatment .. 114
 Native and gel muds—Lignosulfonate muds—Calcium and salt muds—Oil muds—Workover fluids.
 Drilling Hazards .. 114
 Lost circulation—Abnormal pressure—Shales and mud-making formations—High temperature—Hydrogen sulfide.

9. DRILLING FLUID PRACTICES IN WEST TEXAS AND
 NEW MEXICO. .. 117
 General Considerations ... 117

EASTERN SHELF .. 121

MIDLAND BASIN .. 122
 Shallow Well Casing Program ... 122
 Surface casing—Production string.
 Shallow Well Fluid Program by Casing Interval 122
 Surface to 150 feet to 300 feet—Surface casing to T. D.
 Medium Depth Casing Program 122
 Surface casing—Production casing.
 Medium Depth Fluid Program by Casing Interval 122
 Surface to 1,400 feet to 2,100 feet—Surface casing to T. D.
 Deep Hole Casing Program ... 123
 Surface casing—Intermediate casing—Production casing.
 Deep Well Fluid Program by Casing Interval 123
 Surface to 150 feet to 300 feet—Surface casing to 4,000 feet to 5,500 feet—Intermediate casing to T. D.
 Spraberry Field Casing Program 123
 Surface casing—Production casing.
Spraberry Field Fluid Program by Casing Interval

Surface to 300 feet to 350 feet—Surface casing to T.D.

CENTRAL BASIN PLATFORM

Casing Programs

Drilling Fluid Programs and Practices

NORTHWESTERN SHELF

Casing Depths and Formations

Drilling Fluids by Casing Intervals

Surface to 150 feet to 400 feet—Surface casing to 1,800 feet to 2,200 feet—Surface casing to 4,000 feet to 5,000 feet intermediate casing—Surface casing to 6,000 feet to 7,000 feet production casing—Intermediate casing to 8,000 feet to 15,000 feet production casing.

DELWARE BASIN

Casing Program

Drilling Fluid Program by Casing Interval

Surface to 400 feet to 2,500 feet—Surface casing to 9,000 feet to 13,000 feet—Intermediate casing to 12,000 feet to 18,500 feet—Second intermediate or protection liner to total depth.

VAL VERDE BASIN

Casing Program

Mud Program

MARFA BASIN

MARATHON-OUACHITA THRUST

10. DRILLING FLUID PRACTICES IN THE MID-CONTINENT,
NORTH TEXAS, OKLAHOMA AND KANSAS

NORTH TEXAS DRILLING MUD PRACTICES

Geological Considerations and General Nature of the Mud Problem

Eastern Section

Cooke and Grayson Counties—Clay, Montague, Wise and Jack Counties—Archer, Wichita, Wilbarger, and Young Counties.

WESTERN SECTION

OKLAHOMA DRILLING MUD PRACTICES

Southern Oklahoma—Marietta Syncline and Southern Ardmore Basin

Eastern Oklahoma—Arkoma Basin

Western Oklahoma—Anadarko Basin

General mud programs—Deep Simpson-Ordovician—Western and west central—Eastern shelf—Western shelf—Oklahoma Panhandle—Cimarron uplift—Texas and Beaver Counties—Texas Panhandle.

KANSAS DRILLING MUD PRACTICES

Central Kansas Uplift

South Flank of Central Uplift

North Extension of the Anadarko Basin

Forest City and Salina Basin

Cambridge Arch

East Flank of the Los Animas Arch

Shale Dispersion
Corrosion ... 144

11. DRILLING FLUID PRACTICES IN THE ROCKY MOUNTAIN
 AREA, INCLUDING THE WILLISTON BASIN 145
 BASINS WITHIN THE ROCKY MOUNTAINS 145
 Wyoming Area ... 145
 WILLISTON BASIN .. 148
 Central Basin and Nesson Anticline 148
 Cedar Creek Anticline and Eastern Montana 149
 Eastern Basin Area ... 149
 South Dakota .. 149
 UINTA BASIN (UTAH) .. 149

12. DRILLING FLUID PRACTICES ON THE PACIFIC COAST 151
 DRILLING FLUID PRACTICES IN THE LOS ANGELES BASIN 151
 Surface zone—Intermediate zone.
 Production Zone Completion Fluids 154
 Special Purpose Muds ... 155
 Mud Disposal .. 155
 DRILLING FLUID PRACTICES—COASTAL AREA 155
 Santa Maria Basin ... 155
 Ventura Basin ... 155
 Ventura Avenue Field—San Miguelito Field—Oxnard area—
 Santa Paula area—Castaic area.
 CALIFORNIA OFFSHORE OPERATIONS 157
 DRILLING FLUID PRACTICES—CENTRAL SECTION 157
 Geologic formation in San Joaquin Valley—Mud practices
 in the San Joaquin Valley—San Joaquin Valley completion
 fluids—Sacramento Valley—Sacramento Valley mud
 practices—Sacramento Valley completion fluids.
 DRILLING FLUID PRACTICES IN WASHINGTON, OREGON, AND
 SOUTHWESTERN BRITISH COLUMBIA 159
 Washington Coastal Region 159
 Central Washington-Cowlitz Basin 160
 Eastern Washington .. 161
 Oregon .. 161
 Southwestern British Columbia, Canada 161

13. DRILLING FLUID PRACTICES IN ALASKA 163
 Cook Inlet ... 163
 Mud properties in the Cook Inlet Basin—Casing practices.
 North Slope .. 163
 Gulf of Alaska ... 166
 Bristol Bay ... 166

14. DRILLING FLUID PRACTICES IN CANADA 167
 Geology .. 167
 Pressure and Temperature Gradients 170
 Types of Drilling Muds Used in Canada 170
 Surface hole—Below surface casing
 Drilling Mud Problems ... 172
 Lost circulation—Bad make-up water—Shallow gas bearing
formations—Mud rings—Sloughing shales—Anhydrite—Salt—Other mud problems.

Recent Mud Practices .. 174
Northwest Territories ... 175
East and West Coastal Regions ... 176

15. DRILLING FLUID PRACTICES IN THE NORTH SEA 177
 Surface to 100 Feet (Outside Conductor Casing Point) 177
 To 1,000 Feet–1,500 Feet (Conductor Casing Point) 177
 Conductor Casing Point to Next Casing Point—4,000 Feet to
 5,000 Feet ... 177
 From Casing Point to T.D. .. 179

16. DRILLING FLUID PRACTICES IN ALGERIA 181

17. ENGINEERING DATA AND CALCULATIONS USED IN
 MUD WORK .. 185
 Volume of Mud in System .. 185
 Volume of mud pit—Capacity of hole.
 Pump Output and the Mud Cycle .. 185
 Annular Velocity .. 187
 Quantities and Volumes of Materials 188
 Increase in weight—Increase in volume from additions
 of weight material—Weight increase using clay—Volume
 increase using clay—To determine quantity of water necessary
 to obtain a given weight reduction—Oil addition to give a
 desired percent oil—Solids determination—Calculation of
 percent solids by volume on muds containing no barites
 Circulating and Static Well Pressures 191
 Equations Involved in Blowout Preventions 192